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Administration

● Assignment 3 is up.

● Has two deadlines.

– Wed. Aug 8, Fri. Aug 10
● Will talk about it at the end of class.

● Final is Thurs. Aug 16, 7-10 in SF 3201

● Material will be covered next week.
● Office hours next week will be

● T2-4,F4-6.
● Exercise 4 will be optional.

● No time to release it that's not concurrent with the 
assignment.
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Class Review

● Classes are user-made types.
● An instance of a class is called an object.

● A class has instance variables.
● These can have distinct values for each object of 

the same class.

● A class also has class methods.
● These work the same way as other type methods.
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Create an instance of MyClass, and assign 
10 to an instance variable num

class MyClass(object):

    pass
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Create an instance of MyClass, and assign 
10 to an instance variable num

class MyClass(object):

    pass

x = MyClass()

x.num = 10
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Class Review

● Object Oriented Programming supports
● Inheritance
● Polymorphism
● Encapsulation
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Class Naming Conventions

● Classes are named using CamelCase
● Not pothole_case.

● Objects are named using pothole_case.
● Class methods are named using pothole_case.
● Class variables are named using pothole_case.
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Classes variables vs. Instance variables

● Each class can have class variables.
● This is a variable that is associated with the class, 

rather than any specific object.
● To create them, you use an assignment statement 

as follows:
● ClassName.variable_name = value

● The variable can be evaluated with
● ClassName.variable_name

● x.variable_name if x is an instance of 
ClassName.
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Class variables vs. Instance variables

● If you change the value of a class variable 
using ClassName.variable_name, the value 
changes for the ClassName objects.
● ClassName.variable_name = new_value

● If you change the value of a class variable 
using x.variable_name, then it becomes an 
instance variable for that particular object.
● x.variable_name = new_value

● The value of ClassName.variable_name does not 
change, nor does the value of y.variable_name for 
any other ClassName instance y.
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Class variables

● Class variables are generally used to denote 
constants.
● Altering them via objects leads to complicated code.
● Essentially this results in a higher level of aliasing 

problems.
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What do these statments evaluate to?

class MyClass():

    z = 0

y = MyClass()

z = MyClass()

z.z

MyClass.z = 10

z.z

y.z

y.z = 5

y.z

MyClass.z

MyClass.z =3

y.z
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What do these statements evaluate to?

class MyClass():

    z = 0

y = MyClass()

z = MyClass()

z.z

0

MyClass.z = 10

z.z

10

y.z

10

y.z = 5

y.z

5

MyClass.z

10

MyClass.z =3

y.z

5
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Inheritance

● ClassA can inherit the methods and variables 
of ClassB by defining ClassB as follows:
● class ClassB(ClassA):

● We call ClassA the superclass and ClassB 
the subclass.
● Every instance of ClassB is also an instance of 

ClassA.
● Not every instance of ClassA is an instance of 

ClassB.
● So the set of instances of ClassA is a superset of 

the instances of ClassB.
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Inheritance

● We saw that if we have the same method name 
in a subclass as in a superclass, and we call 
subclass_instance.method(), then we 
superclass' method is overwritten and we 
evaluate the subclass' method.
● But sometimes we want to mostly reuse the 

superclass method code, and only modify it a little.
● This comes up particularly commonly in 

constructors, where if your subclass is only a small 
change, you would not like to copy and paste the 
code from the constructor of the superclass.
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Inheritance

● It would be really useful if we could call a 
superclass method inside of a subclass.

● Two ways of doing this, if x is an instance of 
SubClass.

● SuperClass.method_name(x, ...)
● x goes in place of self.
● No longer works in python 3.

● super(SubClass, x).method_name(...)
● super returns x's superclass object.
● self implicitly passed here.
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Inheritance

● Inheritance allows us to define new methods, 
and overwrite already existing ones.

● But even when we overwrite existing ones, we 
can still access them using super.

● super(SubClass, x) will return the 
SuperClass object associated with x.
● Requires x to be an instance of SubClass.

● Recall that if x is an instance of a SubClass, it is 
also an instance of the SuperClass.
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What do these evaluate to?

● class ClassA(object):

    def foo():

        return 4

class ClassB(ClassA):

    pass

class ClassC(ClassB):

    def foo():

        return 5

x = ClassB()

y = ClassC()

x.foo()

super(ClassB, x).foo()

y.foo()

super(ClassC, y).foo()
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What do these evaluate to?

● class ClassA(object):

    def foo():

        return 4

class ClassB(ClassA):

    pass

class ClassC(ClassB):

    def foo():

        return 5

x = ClassB()

y = ClassC()

x.foo()

4

super(ClassB, x).foo()

4

y.foo()

5

super(ClassC, y).foo()

4
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Break1
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Exceptions

● Python often generates errors.
● We can make our own functions, modules, types.

● We can also make our own errors, and 
generate our own errors.

● Errors in Python are objects.
● All error are subclasses of Exception.
● This means we can define our own errors by 

creating subclasses of Exception.
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MyError

● class MyError(Exception):

    pass

● We can create instances of MyError by using 
MyError().

● But these don't stop the code in the same way 
that python errors do.

● We can also create instances of python errors.
● TypeError(), NameError(), etc.
● Creating them in this way also doesn't stop the 

code.



Aug 2 2012

Causing Code to crash

● Done using the keyword raise

● raise TypeError() will cause the code to 
crash with a TypeError.

● raise MyError() will cause the code to 
crash with a MyError.

● Passing the constructor a string will cause it to 
crash with that error massage.
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Why do we want code to crash?

● It can be one way of enforcing sanity checks.
● For example if you know that some list needs 10 

elements, you can check the length and crash if the 
length is wrong.

● Sometimes the program might run a very long time 
before an early error actually breaks the program.
– The longer it runs, the harder the error is to source.

● Mostly crashing is undesirable.
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Avoiding Crashes.

● Avoiding crashes in python involves two 
keywords:

try:

    block1

except:

    block2

● Block1 is executed until an exception is raised. 
Then block2 is executed.

● If no exection is raised, block2 is not executed.
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Not catching some exceptions

● Often you only want to catch some exceptions.
● It's common to design code to produce a specific 

kind of exception.
– It's a common way to enforce parameter requirements.

● But code may also have unplanned errors.
– It is desirable for the code to crash in this case to indicate 

that something is wrong.

● except SpecificException:
● This only catches instances of SpecificException or 

its subclasses.
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Getting information from Exceptions

● As exceptions are objects, it is often useful to 
give them instance variables.
● In particular, the things that actually went wrong 

should be added to the exception.

● For this to be useful, we need to be able to 
access the exception that was raised.

● except MyError e:
● This creates a local variable e that refers to the 

instance of MyError that was raised.
● This local variable can then be used in the 

exception block.
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Break2
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Assignment 3
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