
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

Aug 2 2012

Administration

● Assignment 3 is up.

● Has two deadlines.

– Wed. Aug 8, Fri. Aug 10
● Will talk about it at the end of class.

● Final is Thurs. Aug 16, 7-10 in SF 3201

● Material will be covered next week.
● Office hours next week will be

● T2-4,F4-6.
● Exercise 4 will be optional.

● No time to release it that's not concurrent with the
assignment.

Aug 2 2012

Class Review

● Classes are user-made types.
● An instance of a class is called an object.

● A class has instance variables.
● These can have distinct values for each object of

the same class.

● A class also has class methods.
● These work the same way as other type methods.

Aug 2 2012

Create an instance of MyClass, and assign
10 to an instance variable num

class MyClass(object):

 pass

Aug 2 2012

Create an instance of MyClass, and assign
10 to an instance variable num

class MyClass(object):

 pass

x = MyClass()

x.num = 10

Aug 2 2012

Class Review

● Object Oriented Programming supports
● Inheritance
● Polymorphism
● Encapsulation

Aug 2 2012

Class Naming Conventions

● Classes are named using CamelCase
● Not pothole_case.

● Objects are named using pothole_case.
● Class methods are named using pothole_case.
● Class variables are named using pothole_case.

Aug 2 2012

Classes variables vs. Instance variables

● Each class can have class variables.
● This is a variable that is associated with the class,

rather than any specific object.
● To create them, you use an assignment statement

as follows:
● ClassName.variable_name = value

● The variable can be evaluated with
● ClassName.variable_name

● x.variable_name if x is an instance of
ClassName.

Aug 2 2012

Class variables vs. Instance variables

● If you change the value of a class variable
using ClassName.variable_name, the value
changes for the ClassName objects.
● ClassName.variable_name = new_value

● If you change the value of a class variable
using x.variable_name, then it becomes an
instance variable for that particular object.
● x.variable_name = new_value

● The value of ClassName.variable_name does not
change, nor does the value of y.variable_name for
any other ClassName instance y.

Aug 2 2012

Class variables

● Class variables are generally used to denote
constants.
● Altering them via objects leads to complicated code.
● Essentially this results in a higher level of aliasing

problems.

Aug 2 2012

What do these statments evaluate to?

class MyClass():

 z = 0

y = MyClass()

z = MyClass()

z.z

MyClass.z = 10

z.z

y.z

y.z = 5

y.z

MyClass.z

MyClass.z =3

y.z

Aug 2 2012

What do these statements evaluate to?

class MyClass():

 z = 0

y = MyClass()

z = MyClass()

z.z

0

MyClass.z = 10

z.z

10

y.z

10

y.z = 5

y.z

5

MyClass.z

10

MyClass.z =3

y.z

5

Aug 2 2012

Inheritance

● ClassA can inherit the methods and variables
of ClassB by defining ClassB as follows:
● class ClassB(ClassA):

● We call ClassA the superclass and ClassB
the subclass.
● Every instance of ClassB is also an instance of

ClassA.
● Not every instance of ClassA is an instance of

ClassB.
● So the set of instances of ClassA is a superset of

the instances of ClassB.

Aug 2 2012

Inheritance

● We saw that if we have the same method name
in a subclass as in a superclass, and we call
subclass_instance.method(), then we
superclass' method is overwritten and we
evaluate the subclass' method.
● But sometimes we want to mostly reuse the

superclass method code, and only modify it a little.
● This comes up particularly commonly in

constructors, where if your subclass is only a small
change, you would not like to copy and paste the
code from the constructor of the superclass.

Aug 2 2012

Inheritance

● It would be really useful if we could call a
superclass method inside of a subclass.

● Two ways of doing this, if x is an instance of
SubClass.

● SuperClass.method_name(x, ...)
● x goes in place of self.
● No longer works in python 3.

● super(SubClass, x).method_name(...)
● super returns x's superclass object.
● self implicitly passed here.

Aug 2 2012

Inheritance

● Inheritance allows us to define new methods,
and overwrite already existing ones.

● But even when we overwrite existing ones, we
can still access them using super.

● super(SubClass, x) will return the
SuperClass object associated with x.
● Requires x to be an instance of SubClass.

● Recall that if x is an instance of a SubClass, it is
also an instance of the SuperClass.

Aug 2 2012

What do these evaluate to?

● class ClassA(object):

 def foo():

 return 4

class ClassB(ClassA):

 pass

class ClassC(ClassB):

 def foo():

 return 5

x = ClassB()

y = ClassC()

x.foo()

super(ClassB, x).foo()

y.foo()

super(ClassC, y).foo()

Aug 2 2012

What do these evaluate to?

● class ClassA(object):

 def foo():

 return 4

class ClassB(ClassA):

 pass

class ClassC(ClassB):

 def foo():

 return 5

x = ClassB()

y = ClassC()

x.foo()

4

super(ClassB, x).foo()

4

y.foo()

5

super(ClassC, y).foo()

4

Aug 2 2012

Break1

Aug 2 2012

Exceptions

● Python often generates errors.
● We can make our own functions, modules, types.

● We can also make our own errors, and
generate our own errors.

● Errors in Python are objects.
● All error are subclasses of Exception.
● This means we can define our own errors by

creating subclasses of Exception.

Aug 2 2012

MyError

● class MyError(Exception):

 pass

● We can create instances of MyError by using
MyError().

● But these don't stop the code in the same way
that python errors do.

● We can also create instances of python errors.
● TypeError(), NameError(), etc.
● Creating them in this way also doesn't stop the

code.

Aug 2 2012

Causing Code to crash

● Done using the keyword raise

● raise TypeError() will cause the code to
crash with a TypeError.

● raise MyError() will cause the code to
crash with a MyError.

● Passing the constructor a string will cause it to
crash with that error massage.

Aug 2 2012

Why do we want code to crash?

● It can be one way of enforcing sanity checks.
● For example if you know that some list needs 10

elements, you can check the length and crash if the
length is wrong.

● Sometimes the program might run a very long time
before an early error actually breaks the program.
– The longer it runs, the harder the error is to source.

● Mostly crashing is undesirable.

Aug 2 2012

Avoiding Crashes.

● Avoiding crashes in python involves two
keywords:

try:

 block1

except:

 block2

● Block1 is executed until an exception is raised.
Then block2 is executed.

● If no exection is raised, block2 is not executed.

Aug 2 2012

Not catching some exceptions

● Often you only want to catch some exceptions.
● It's common to design code to produce a specific

kind of exception.
– It's a common way to enforce parameter requirements.

● But code may also have unplanned errors.
– It is desirable for the code to crash in this case to indicate

that something is wrong.

● except SpecificException:
● This only catches instances of SpecificException or

its subclasses.

Aug 2 2012

Getting information from Exceptions

● As exceptions are objects, it is often useful to
give them instance variables.
● In particular, the things that actually went wrong

should be added to the exception.

● For this to be useful, we need to be able to
access the exception that was raised.

● except MyError e:
● This creates a local variable e that refers to the

instance of MyError that was raised.
● This local variable can then be used in the

exception block.

Aug 2 2012

Break2

Aug 2 2012

Assignment 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

